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The purpose of this note is to construct a Leray-type spectral sequence for homotopy classes 

of maps of simplicial presheaves, both stably and unstably, for any morphism of Grothendieck 

sites. This spectral sequence specializes to the ordinary Leray spectral sequence in sheaf co- 

homology theory, but may also be used for generalized Ctale cohomology theories such as &ale 

K-theory. 

Introduction 

Let u : iS’-+ ~2 be a morphism of Grothendieck sites, with structure functor 

u : 91 + E7 and associated presheaf functors U, : 8^ + ~29~ and tl’: %r^ --, Q^. Here, 

%?* denotes the category of presheaves, or set-valued contravariant functors on K?, 

and the direct image functor U, is defined by u,(F)=Fo U. By definition, u* is 

required to be continuous in the sense that u,(F) is a sheaf on G@ if F is a sheaf on 

‘r??. The inverse image functor us is defined to be the left adjoint of u,. Again, by 

definition, us is required to be left exact (see [l, p. 3551). 

Let X be a pointed locally fibrant simplicial presheaf on the site g. In the first 

section of this note, I shall construct a Leray spectral sequence, with 

E:‘=H2S-t(g; R”u,X) “a” [*g,O’-SX] for 12s. 

The construction of the spectral sequence implies that ES”=0 for t>2s. 
[*g,Qf’-sX]g denotes morphisms from the terminal simplicial presheaf + to the 

iterated loop object Q ‘-“X in the homotopy category associated to the category of 

simplicial presheaves on Q; it can be regarded as a cohomology object HteS(VZ; X) 

for s!? with coefficients in the simplicial presheaf X. R’u,X denotes the sheaf on ~8 

which is associated to the presheaf defined by d- [*uCd), O’X luCd)lu(d), where 

Q”X luCd) denotes the restriction of Q’X to the site 8 1 u(d), *U(d) is the terminal 

simplicial presheaf on that site, and the indicated morphisms are in a homotopy 
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category which is defined accordingly. The quotation marks above mean that the 

spectral sequence usually only converges if extra assumptions are placed on X (see 

[5, lo]). The spectral sequence is a Bousfield-Kan spectral sequence for a tower of 

fibrations [3] arising from the homotopy theory of simplicial presheaves. The reader 

who is unhappy with Bousfield-Kan indexing should observe that applying re- 

indexing trick of [lo, 5.541 to the Leray spectral sequence yields a spectral sequence 

with 

&2P’q=HP(52J,RqU*X) “j” [*v,QpPqX]. 

If X happens to be an Eilenberg-Mac Lane object of the form K(A, n) for some 

sheaf of abelian groups A on g and Olsln, then R’u,X is the sheaf associated 

to the presheaf d - [euCd),K(A, 12 -s)],(~) =HnmS(g 1 u(d); A IgluCd)). In other 

words, R%,K(A, n) is the higher direct image sheaf RnpSuJ. In this case, the 

spectral sequence constructed here is really a truncated version of the traditional 

Leray spectral sequence. The truncation works because of the fringing effect in the 

Bousfield-Kan spectral sequence. One gets the traditional Leray spectral sequence 

out of this construction by rolling the same tape for presheaves of spectra; this will 

be done in the second section of this paper. 

I do not seriously address the question of finding applications of this spectral 

sequence in this paper. The construction was motivated in part by a question of 

Weibel’s. He wanted a machine-theoretic method of showing that, if n : Y+ X is a 

finite map of schemes, then the set of isomorphism classes of rank IZ vector bundles 

on X is isomorphic to the set of n, Gl,-torsors for the Zariski topology on Y. From 

the point of view of the theory given here, the basic idea is to show that R”rrrr,BG1, 

is trivial; this can be achieved by elementary techniques [4, A.31. It follows that, if 

i: BGl, + GBGl, is a weak equivalence on the Zariski site of Y from BGl, to a 

globally fibrant model GBGl, , then the induced map n,i : n,BGI, -+ n* GBGl, is a 

weak equivalence of simplicial presheaves on the Zariski site over X. Then one can 

show that the adjunction map induces an isomorphism [*X, n,BGl,] = [*y,BG1,] 

of homotopy classes relative to the Zariski topologies on X and Y. To relate this 

to the question that was actually posed, one needs to know that [*X,BGl,] may be 

identified with the set of Gl,-torsors on X, and hence with the set of isomorphism 

classes of rank IZ vector bundles on X, but this is a consequence of (a) of [7, 1.41; 

the same result implies that [*y, rc,BGl,] is isomorphic to the set of rc,Gl,-torsors 

on Y. The argument works in general: the obstruction to an isomorphism of the 

form [*,BG] = [*, n,BG] for a sheaf of groups G lies in the set R’n,BG. 

There should be applications of this spectral sequence to calculation of K-theories 

arising from various topologies. It is a consequence of the construction, for 

example, that the etale K-theory of a Noetherian scheme of finite Krull dimension 

may be computed using a strongly convergent spectral sequence involving Nisnevich 

cohomology groups (the convergence is a consequence of a result of Kato and Saito 

which gives a bounded Nisnevich cohomological dimension for such schemes - see 

[9]). The calculational advantage of doing so has yet to be determined, however. 
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1. The basic construction 

With the notation above, suppose that F is a globally fibrant [51 simplicial pre- 

sheaf on $3’. Then I claim that there is an adjointness isomorphism of the form 

In effect, u,F is globally fibrant, and so there are isomorphisms 

[*a9 u*F], = q, hom(*9, u,F)= q, hom(uS*,,F)r x0 hom(*g, F) 

= [*g, 4,. 

To see that u,F is globally fibrant, it suffices to show that us preserves trivial 

cofibrations. But us preserves monomorphisms and trivial local fibrations, and 

commutes with Kan’s Ex” functor, all by exactness, and the claim is proved. 

Suppose that X is a pointed simplicial presheaf on %, and find a weak equivalence 

q :X-+ GX such that GX is globally fibrant. Then there are isomorphisms of the 

form 

[*g, Q”Xl, = [*g, Q”GXlg 

= [*g, u,Q”GX]~ 

= [*g,Q2”~,GX]9. 

The first isomorphism is induced by V, the second comes from the claim just proved 

and the fact that globally fibrant objects are preserved by the loop functor, and the 

third reflects the observation that the loop functor commutes with the direct image 

functor . 

The Leray spectral sequence for [*g, D ‘-“Xl, is the cohomological descent spec- 

tral sequence for [*a, sZ’-‘u*GX]~ which arises from the Postnikov tower con- 

struction for u,GX (see [5, p. 781). This spectral sequence has 

Es,‘=H2S-1(9; 7c,u*GX-) “*” [*a,O’-Su,GX], E[*~,@-~X]~, 

where n,u,GX- is the sheaf associated to the presheaf defined by d- n,u,GX(d) 

for objects d of C3. It remains to identify this presheaf. But there are isomorphisms 

TI,U, GX(d) = n,GX(u(d)) 

= [*u(d), Q’GX iu(&(ci) 
3 [*u(d), QSX lu(d)lu(d), 

since restriction along the functor $F? 1 u(d) + ‘%? is an exact functor which preserves 

global fibrations and commutes with Ex” (see [.5, p. 801). It follows that 7r,u*GX- 

is the sheaf R%,X as defined in the introduction. We have proved 

Theorem 1.1. Let u : Q + ~28 be a morphism of Grothendieck sites, with associated 
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direct image functor u,. Let X be a pointed locally fibrant simplicial presheaf on 
K?. Then there is a Leray-type spectral sequence, with 

RSu,X is the sheaf associated to the presheaf defined by d - [*uCdj, O’X luCdj]uCdj. 
EF’=O if t>2s. 0 

2. The stable case 

Insofar as the results of the last section were dependent to a certain extent on the 

existence of Postnikov towers, ‘rolling the same tape’ requires us to produce a 

precise analogue of that construction for presheaves of spectra. In order to do this 

properly, we need to revive Kan’s approach [8] to stable homotopy theory some- 

what. I shall begin by giving a new description of his notion of suspension. 

Consider the inclusion of An in A’+ ’ induced by the inclusion of ordinal numbers 

d n+ ’ : n C n + 1, and let the number n + 1 be a base point for A” ‘. Observe that 

any ordinal number map 8: n -+ m uniquely extends to an ordinal number map 

1!9* :n+l+m+l such that B,(n+ l)=m+ 1. Furthermore, e*d”+‘=d”‘+‘tl. In 

other words, An+’ is a perfectly good functorial (even geometrically obvious) can- 

didate for the cone CA’ on A”. The usual trick of realizing the construction works: 

the cone CY of a simplicial set Y may be defined to be the colimit 

CY= li,m An+’ 
A”- Y 

indexed over the simplex category of Y. Then the pointed cone C,X of a pointed 

simplicial set Y may be defined by the pushout diagram 

*-c*x 

One has, of course, collapsed the cone on the base point * of X to a point. 

The maps d”+’ :dn+An+’ induce a natural pointed inclusion XC C,X. The 

pointed simplicial set C,X/X may be identified with the Kan suspension ZX of X 

[8] (he uses the notation SX, but this conflicts with the standard notation for the 

singular functor). 

It is obvious that the realization IC,XI of the cone of a pointed simplicial set X 

is naturally homeomorphic to the topological cone C, 1x1 of the pointed space /XI, 

and that 12x1 is naturally homeomorphic to the topological suspension 2 1x1 of the 

space IX/. 
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Furthermore, a pointed map v,: .ZX + Y may be identified with a collection of 

pointed set maps (suspension homomorphisms) p,, : X,, + Y, + 1, n L 0 such that: 

(i) d,...d,(cp,(x))=*, d,+,~)~(x)=* for each XEX,, and 

(ii) for each ordinal number map 19 : m -+ n, the diagram 

VII x, - Y n+l 

Iv* 1 ! 0: 

(4, x,- Y m-t1 

(1) 

commutes, where I!?, :m + 1 -+n+l is the unique ordinal 

number map which restricts to 8 along the standard inclu- 

sion of m in m+l and sends m+l to n+l. 

I define a Kan spectrum to be a sequence of pointed simplicial sets X”, nr0, 

together with pointed simplicial set maps of the form ZX”~X”“, nr0. Note 

that such an object is almost what Kan [8] would call a prespectrum (but see also 

121). he reserves the term spectrum for objects Y consisting of pointed sets YCn,, 

n ~77, together with (pointed) face maps dj: YCn, + Y+i), and degeneracies 

sjl Yn)+ ++I), i, jr 0, such that the usual simplicial identities hold and such that, 
for each x E YCn,, di(X) = * for i sufficiently large. In fact, Y is not so much a spec- 

trum as a cell complex associated to a Kan spectrum; see the method of associating 

a spectrum to a prespectrum in [8]. 
A Kan spectrum X is said to be strictly fibrant if each X” is a Kan complex, for 

n L 0. Let Y’“] denote the n th Postnikov section of a pointed Kan complex Y, and 

recall that Ylnl has the form Yt”] = Y/-,, where the simplices x, y satisfy x--, y if 
Sk,(x) = Sk,,(y). Here, Sk,(x) is the composition 

sk,d’cd’A Y, 

where x: A’ + Y is the map which classifies x. It is a trivial observation that the 

bonding map XX” +X”+ ’ induces a map Z(X”)lkl -+ (X’+ ‘)lk+ ‘I. One may there- 

fore define, for each n E Z, the n th Postnikov section Xl”’ of the strictly fibrant 

Kan spectrum X to consist of the spaces (X’)‘“’ where s - r = n, and with bonding 
maps z(X’)[“l -+ (X’+ I)[‘+ ‘1 as defined above. There is a strict fibration X+X1”] 

which induces isomorphisms in stable homotopy groups n,(X) G ,c,(Xt’l) for ~5 n ; 
this fibration is induced by collapsing X levelwise with respect to the obvious 

equivalence relations. Note that rc,(Xl”‘)~O for s> n. The map X-t Xt”’ factors 

through the map X+Xl’+‘], and the resulting map Xtn+ ‘I --+X1”’ is a strict fibra- 

tion whose fibre is an Eilenberg-Mac Lane spectrum of type K(n, + l(X>, n + 1). The 

‘tower’ 
. . . ,Xb+‘l’X[“l+Xl~-~l+ . . . 

is the (natural) Postnikov tower of the strictly fibrant Kan spectrum X. 
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Recall that, most commonly, a spectrum Y of pointed simplicial sets consists of 

pointed simplicial sets Y”, n 2 0, together with pointed maps of the form S’ A Y” + 

Y “+l, again for n20. Here, S’ is the pointed simplicial set d’/&l’. Let SSpectra 

denote the category of spectra in the pointed simplicial set category, let KanSpectra 

denote the category of Kan spectra, and let TopSpectra denote the category of spec- 

tra in the pointed topological space category. Then, following [2], [6] and [8], one 

finds that there are adjoint pairs of functors of the form 

I.1 s 
SSpectra 1 TopSpectra I 

s 1.1 
KanSpectra 

induced by the ordinary realization functor 1. 1 and the singular functor S. The 

canonical maps associated to these adjunctions induce isomorphisms in stable 

homotopy groups in all cases. All functors in sight also take strict fibrations to strict 

fibrations, since the realization of a Kan fibration is a Serre fibration. An ordinary 

spectrum of pointed simplicial sets Y therefore has a natural Postnikov tower 

associated to it, namely the tower of strict fibrations consisting of the spectra 

Sl(Sl Yl)lnl/ and the induced fibrations between them. To simplify the notation, 

write Yl”] for Sl(SjY/)[“ll. 

If Z is a presheaf of spectra on a Grothendieck site $8, then we can form its n th 

Postnikov section Zlnl and the tower of pointwise strict fibrations 

. . . ,~~“+‘l-*~~“l-t~~“-ll-+~~~, 
(2) 

just by using the naturality of the construction given above. 

A pointwise strict fibration p :X + Y of presheaves of spectra is a map of pre- 

sheaves of spectra such that each map p :X(d) -+ Y(d) on sections is a strict fibra- 

tion of spectra of pointed simplicial sets. Suppose that F is the fibre of p, and let 

T*_F’S” be the constant presheaf of spectra associated to the spectrum 2”s’. Then 

there is a natural long exact sequence of the form 

+.. + [T*z”S’, F] -+ [I-*Z”S’, X] -+ [I-*Z”,S’, Y] + [T*Z”- ‘So, F] + ... , (3) 

where the square brackets denote morphisms in the stable homotopy category 

associated to the category of presheaves of spectra on 91 [6]. In effect, the fibre 

sequence F-r X-+ Y may be replaced up to natural weak equivalence by the fibre 

sequence QF+ QX- QY of presheaves of Q-objects. Then, for example, there is 

an isomorphism 

[r*~“s”,F]e[*,52n+kQFk], 

where the thing on the right denotes morphisms in the homotopy category associated 

to simplicial presheaves on @. The claim follows by pasting together long exact 
sequences of the form 

. . . -+ ]*, Q n+kQFk] + [*,fTj”+kQXk] -+ [*,J-J~+~QY~] + [sz,~Y~‘“+~-~QF~] -+ . . . . 
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These are natural long exact sequences associated to local fibrations between locally 

fibrant simplicial presheaves [5]. 

The exact couple associated to the Postnikov tower (2) via long exact sequences 

of the form (3) gives one of the descent spectral sequences for [r*L’“S’, Z]. By 

definition, it has 

Es”= [l-*~‘?S”,K(z,Z,s)] 

=H1S-‘(9; n,z-), (4) 

and converges to [T*_E-SSo,Z] under good conditions. Here, t and s are both 

allowed to run through all of Z. Note that Es” = 0 if t > 2s. 

Now, in the notation of the introduction, let X be a presheaf of spectra on the 

Grothendieck site 8, and choose a strict weak equivalence QX- GX, where GX is 

a fibrant presheaf of spectra on ‘S? [6, p. 7471. Then GX is an C&object such that 

each GX” is a globally fibrant simplicial presheaf. It follows that each u*GX” is 

globally fibrant. Furthermore, us preserves cofibrations, and so U, preserves trivial 

global fibrations and hence weak equivalences between globally fibrant objects. 

Thus, u,GX is a fibrant presheaf of spectra on g. Note also that there are iso- 

morphisms 

[Z-*EnSo, u*GX]~ s [uSZ-*LY”S’, GX], 

E [T*LYS”, GX] w 

= [r*z”sO, Xl,, 

again since GX is fibrant, and since the constant presheaf functor commutes with 

base change. Finally, there are isomorphisms of the form 

II,U* GX(d) z rc, GX(u(d)) 

We have proved 

Theorem 2.1. Let u : if? + SZ be a morphism of Grothendieck sites, with associated 
direct image functor u, . Let X be a presheaf of spectra on %. Then there is a Leray- 
type spectral sequence, with 

E;‘=HzS-@; R%,X) “*” [Z-*~‘-‘S”,X]~, s,tEz. 

R%,X is the sheaf associated to the presheaf defined by d - [T*.PS’, X luCdj]uCdj. 
EF’=O if t>2s. 
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